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We present an investigation of the optical properties of photonic crystals whose constituent materials exhibit
anomalous dispersive behavior. In particular, the anomalous dispersion near resonances may lead to additional
propagating modes in the gap of the undoped system for a localized region of wave-vector space. Such a
system may be realized by infiltrating quantum dots in polymer suspensions into the pores of two-dimensional
high-index photonic crystals. An evaluation of the absorption lengths associated with these unconventional
modes and corresponding transmission calculations demonstrate that this effect can be observed in currently
accessible structures.
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I. INTRODUCTION

Progress in photonics is closely related to development of
optical materials with tailor-made properties. Photonic crys-
tals �PCs�1–3 represent a novel class of man-made optical
materials. The judicious design of these two-dimensional
�2D� or three-dimensional �3D� periodic dielectric arrays al-
lows one to tailor the photonic dispersion relation and the
corresponding mode structure to almost any need. In particu-
lar, the flexibility associated with material composition, lat-
tice periodicity, and symmetry together with the deliberate
creation of defect structures makes PCs the optical analog of
an electronic semiconductor.

The usefulness of PCs and defect structures embedded in
them may be substantially enhanced if the structures exhibit
one or more forms of tunability. This has led a number of
authors to propose PC structures whose constituent materials
exhibit tunable properties such as temperature-dependent re-
fractive indices,4 strongly dispersive behavior,5 as well as
electro-4–6 and magnetooptically7 controllable anisotropies.

In this paper, we consider photonic band structures and
absorption lengths of PCs whose constituent materials ex-
hibit anomalous dispersion. By embedding these materials
into a PC, one may expect to modify the photonic band
structure considerably, if the resonance frequency is tuned to
lie close to a photonic band edge. As we will show, the
hybridization of the electromagnetic wave mode with the
local dielectric modes leads to a splitting of the wave mode
into three submodes in a limited region of wave-vector
space. Of these three modes, two are stable and form a
bubble shape in the band structure. However, as any
frequency dependence of the effective dielectric constant is

necessarily accompanied by a dissipative component, the
question arises as to whether these bubble modes are
overdamped. To answer this question, it requires a full treat-
ment of the propagating and absorptive properties of the
electromagnetic wave. As a consequence, we describe a
highly efficient on-shell methodology based on photonic
Wannier functions,8 which allows us to solve for the photo-
nic band structure and absorption lengths associated with
complex-valued and frequency-dependent dielectric con-
stants. We present a careful study of this problem and con-
clude that the bubble modes should, indeed, be observable in
currently accessible materials.

The paper is organized as follows. In Sec. II, we define
the model system used in the following sections. The nu-
merical methods for band structure and attenuation length
calculations of PCs with dispersive components are de-
scribed and discussed in Sec. III. In Sec. IV, we present
results for the model system, discuss the effects of the
anomalous dispersion of the constituent materials on the
photonic band structure, and investigate the attenuation
length resulting from the nonzero imaginary part of the
dielectric constant. Finally, we summarize our results in
Sec. V.

II. MODEL SYSTEM

In the following sections, we discuss in detail the case of
TM-polarized radiation in 2D macroporous silicon PCs9

�square lattice of pores with lattice constant a in silicon,
dielectric constant of silicon �Si=12.0, and electric field po-
larized parallel to the pore axis�, where the pores �radius
r /a=0.475� have been infiltrated with a polymer �typical di-
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electric constant �polymer=2.56� that contains a �small� vol-
ume fraction of quantum dots. This is schematically depicted
in Fig. 1, and we would like to note that similar systems have
recently been realized,10,11 albeit for different purposes.
However, we would like to emphasize that all our arguments
are directly applicable to the case of TE-polarized radiation
in 2D PCs as well as to the case of 3D PCs if only the
constituent materials exhibit frequency ranges with anoma-
lous dispersion.

In our simplified approach, the quantum dots are modeled
through a �linear� two-level dielectric constant,

�tl��� = 1 +
�p

2

�0
2 − �2 − i��

, �1�

where �0, �p, and � denote, respectively, the resonance fre-
quency, the oscillator strength, and the linewidth �damping
constant�. Owing to their small size of a few nanometers
relative to the optical wavelength, we may treat the admix-
ture of a certain concentration � of quantum dots to the
polymer within a Maxwell-Garnett effective dielectric con-
stant approach.12 As a consequence, the effective dielectric
constant of this doped polymer that fills the pores of the
macroporous silicon PCs reads

�pore��� = �m�1 +
3�����

1 − ������ . �2�

Here, we have introduced the polarizability ���� of the
quantum dots within the polymer matrix ��m=�polymer� ac-
cording to

���� =
�tl��� − �m

�tl��� + 2�m
. �3�

In Fig. 2, we depict the frequency dependence of the real
and imaginary parts of this effective dielectric constant �Eq.
�2�� for a resonance frequency �0a /2�c=0.245, oscillator
strength �p=0.8�0, damping constant �=0.01�0, and several
realistic values of the concentration �. In fact, changing the
concentration � of quantum dots allows a rather simple way

of significantly tuning the pore dielectric constant in the vi-
cinity of the quantum-dot resonance frequency. As a result of
the hybridization of the quantum-dot modes with the back-
ground modes provided by the polymer, this resonance is
slightly shifted relative to the bare quantum-dot resonance
frequency.

Before proceeding to photonic band structure computa-
tions of composite PC structures, we would like to make two
observations. First, while we have derived the effective di-
electric constant �pore��� of the pore material for a specific
and easily realizable model system �see Ref. 11�, it should be
clear that its frequency-dependent behavior depicted in Fig. 2
is rather generic and can be obtained via many other routes
such as the growth of polar semiconductor nanocrystals
within the pores. Second, the value of the resonance fre-
quency determines the PC’s photonic bands which experi-
ence the effects of the anomalous dispersion depicted in Fig.
2 most strongly. Therefore, the undoped PC has to be care-
fully engineered in order to ensure that the corresponding
Bloch functions sample the pores sufficiently well. Analo-
gous considerations apply to other structures. We will return
to this issue in Sec. IV.

III. BAND STRUCTURE AND ATTENUATION LENGTH
COMPUTATIONS

The Maxwell equations for time-harmonic TM-polarized
light propagating in the �x ,y� plane of a 2D PC can be re-
duced to a scalar wave equation for the z-component E�r�� of
the electric field.

�2E�r�� + ��

c
�2

�pc��,r��E�r�� = 0. �4�

Here, �2=�x
2+�y

2 and c denote the 2D Laplacian and the
vacuum speed of light, respectively. The dielectric constant

FIG. 1. �Color online� Model system of a 2D macroporous sili-
con PC infiltrated with quantum dots in a polymer suspension. This
PC consists of a 2D macroporous silicon backbone �dielectric con-
stant �Si=12.0� into which a square lattice of pores �radius r /a
=0.45� has been etched, which subsequently have been filled with a
low-index polymer �dielectric constant �polymer=2.56�.
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FIG. 2. �Color online� Effective dielectric constant of a typical
polymer doped with quantum dots for three different concentrations
�. The quantum-dot parameters are given in the text. The resonance
of this Maxwell-Garnett effective dielectric constant is shifted rela-
tive to the resonance frequency of isolated quantum dots �vertical
dotted line�.
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�pc�� ,r����pc�� ,r�+R� � contains all the information about the
PC and is periodic with respect to the set R= �n1a�1

+n2a�2 ; �n1 ,n2��Z2	 of lattice vectors R� that are generated
by the primitive translations a�1 and a�2. For our model sys-
tem, the PC dielectric constant reads as

�pc��,r�� = �Si + ��pore��� − �Si�

R�

��r − �r� − R� �� , �5�

where we have introduced the Heaviside function ��x�.
Equation �4� represents a differential equation with peri-

odic coefficients and, therefore, its solutions obey the Bloch-
Floquet theorem,

Enk��r� + a� j� = eik�a� jEnk��r��, j = 1,2. �6�

In the reduced zone scheme,13 which we adopt here, the
Bloch modes Enk��r�� are labeled with the composite index
�nk��, where n and k�, respectively, denote the band index and
the wave vector in the first Brillouin zone �BZ�.

In the case of a frequency-independent dielectric constant,
�pc�� ,r����pc�r��, Eq. �4� can be solved as a standard eigen-
value problem using general purpose methodologies such
as plane wave expansion �PWE� approaches,14,15 finite-
difference based multigrid methods,16 or advanced finite el-
ement techniques.17 However, the situation becomes much
more complicated for frequency-dependent dielectric con-
stants which we study in this paper. In this case, Eq. �4�
constitutes a nonlinear elliptic eigenvalue problem with
Bloch-boundary conditions and, therefore, solving Eq. �4�
either requires the usage of an on-shell methodology,18,19

which—for a given frequency �—allows one to compute the
allowed wave vectors k���� or an extension of the standard
band structure methods to nonlinear eigenvalue problems.
For instance, the standard PWE approach has been adapted
to treat specific forms of frequency-dependent dielectric con-
stants, and, recently, it has been reformulated to facilitate
on-shell computations.20 However, the Kramers-Kronig
relations—which are a manifestation of causality21—require
that dispersive materials have to be described through a
complex-valued dielectric constant such as those described
in Eqs. �1� and �2�. As a consequence and in order to ensure
the viability of the results, absorption has to be taken into
account by all methods of photonic band structure computa-
tions.

In general, there exist two distinct ways how to deal with
absorption in photonic band structure theory. Within the first
route, real-valued wave vectors are maintained so that ab-
sorption leads to complex eigenfrequencies.22,23 From a
mathematical point of view, this has the advantage that the
Bloch modes can be normalized. Physically, this corresponds
to the situation where the Bloch modes acquire a finite life-
time, i.e., an initially excited Bloch mode decays as time
progresses. The realization of a corresponding experiment
appears to be rather challenging. The second option is to
retain real-valued frequencies and to associate the effects of
absorption with complex-valued wave vectors. As a result,
the Bloch modes resist normalization. On the other hand, an
imaginary part of the wave vector allows one to define a

length scale that describes how waves at a given frequency
are attenuated within a PC. This attenuation length accounts
for both the effects of absorption and photonic band gaps.
The latter are also present in the nonabsorbing case. An ex-
perimental realization of this situation would have to be
based on studies of the transmission through finite but suffi-
ciently large PC samples, so that effects related to the PC
surfaces �for instance, in- and outcoupling efficiencies� can
be separated from the attenuation in the bulk PC �Sec. IV�.

The relation between the two approaches discussed above
is nontrivial. For instance, in the case of complex eigenfre-
quencies as functions of real wave vectors, it would be nec-
essary to develop an analytical continuation of those fre-
quencies to complex-valued wave vectors and to search for
wave vectors for which the imaginary part of the frequency
vanishes. Since the eigenfrequencies are, in general, only
known numerically, this is a formidable task. Furthermore,
even in the weakly absorbing case, simple perturbation tech-
niques for the transition from complex frequencies to com-
plex wave vectors fail,22 although recent advances23 suggest
that more sophisticated approaches could improve the situa-
tion �see also Ref. 24�.

In the following sections, we describe three independent
and somewhat complementary methods that allow one to de-
velop a complete physical picture of PCs with dispersive
constituent materials and apply those methods to our model
problem with anomalous dispersion. First, we present an ef-
ficient on-shell methodology based on photonic Wannier
functions that allows one to carry out band structure and
attenuation length calculations for general frequency-
dependent and complex-valued dielectric constants. We then
provide a brief summary of an extension of standard band
structure calculation techniques �initially described in Ref.
24 and subsequently rediscovered in Ref. 25� that allows one
to deal with frequency-dependent but real-valued dielectric
constants. This extension may provide the basis for reason-
able approximations in systems where absorption can be
treated perturbatively.24 Most importantly, this extension
suggests a straightforward geometrical interpretation and ad-
ditional intuitive insights into the results obtained from the
more general Wannier function approach. Finally, we dem-
onstrate how attenuation lengths can be extracted from trans-
mission calculations through finite PC samples. These calcu-
lations are based on a rigorous coupled wave analysis
�RCWA� approach with numerical scattering matrices and
allow a direct comparison with the Wannier function results
for infinite PCs.

A. Wannier function approach

In order to solve Eq. �4� within the Wannier function ap-
proach, we decompose the complex-valued PC dielectric
constant �pc�� ,r�� into a real-valued and nondispersive refer-
ence part �ref�r�� and a complex-valued frequency-dependent
part ���� ,r��=�pc�� ,r��−�ref�r�� that both retain the lattice
periodicity of the PC. As alluded to above, for the reference
system, we can easily solve the corresponding wave equa-
tion,
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�2E�r�� + ��

c
�2

�ref�r��E�r�� = 0, �7�

via standard band structure computations. Moreover, we
have a certain flexibility in choosing the reference dielectric
constant �ref�r��. The actual choice of �ref�r�� should be guided
by physical considerations, such as the range of values,
which the PC’s different constituent material dielectric con-
stants take on over the frequency range of interest so that the
reference dielectric constant is �in some sense� not too far
from the actual system that should be solved. For our model
system, the natural choice for �ref�r�� is the 2D macroporous
silicon PC whose pores have been infiltrated with the un-
doped polymer.

As a result, Eq. �7� provides us with a reference band
structure and corresponding reference Bloch functions
E

nk�
�0��r��. These Bloch functions are then further processed to

yield the reference PC’s photonic Wannier functions,

WnR��r�� =
VWSC

�2��2�
BZ

d2k e−ik�R�

m

Unm�k��Enk�
�0��r�� . �8�

Here, VWSC denotes the volume of the PC’s Wigner-Seitz
cell. The unitary matrices Unm�k�� have to be determined nu-
merically and facilitate that the Wannier functions are maxi-
mally localized in the unit cell that corresponds to the lattice

vector R� . Owing to the fact that photonic Wannier functions
are essentially the result of a lattice Fourier transform of
Bloch functions, they have encoded into them the entire in-
formation of the reference PC’s photonic band structure and
exhibit very useful orthonormality and translational proper-
ties,

� d2r W
mR�
* �r���ref�r��Wm�R���r�� = 	mm�	R� R��, �9�

WmR��r�� = Wm0��r� − R� � . �10�

In Eq. �9�, the integration extends over all space and 	mm�
denotes the Kronecker symbol. For details on the actual con-
struction of photonic Wannier functions and their usage in
the design of functional elements, we refer to Ref. 8. In Figs.
3 and 4, we display, respectively, the photonic band structure
�calculated with the multigrid method16� and a selection of
maximally localized Wannier functions for the reference PC
structure. The band structure exhibits a photonic band gap in
the frequency range �a /2�c� �0.233,0.249� located be-
tween bands 1 and 2. For the subsequent computations, we
employ the first 18 Wannier functions.

These reference Wannier functions may now be utilized
for solving the photonic band structure of the full system
with anomalous dispersion,

�2E�r�� + ��

c
�2

��ref�r�� + ����,r���E�r�� = 0. �11�

Upon inserting an expansion of the electric field into Wan-
nier functions,

E�r�� = 

m,R�

EmR�WmR��r�� , �12�

we obtain—via projecting onto the same basis—a matrix
equation for the unknown amplitudes EmR� that in component
form reads as



m�,R��

M
R� R��

mm����Em�R�� = 0, �13�

with the corresponding frequency-dependent system matrix,

M
R� R��

mm���� = 	mm�	R� R�� + D
R� R��

mm���� − � c

�
�2

A
R� R��

mm�. �14�

Here, the entries are constructed from the overlap matrix
elements of Wannier functions with respect to the operators
appearing in Eq. �11�, utilizing the orthonormality of the
Wannier functions �Eq. �9��. Explicitly, we have
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X

FIG. 3. �Color online� Photonic band structure for TM-polarized
radiation propagating in the reference PC structure. The associated
system parameters are listed in the caption of Fig. 1.

FIG. 4. �Color online� A selection of maximally localized Wan-
nier functions for the reference PC structure. The corresponding
photonic band structure is displayed in Fig. 3 and the associated
system parameters are listed in the caption of Fig. 1.
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A
R� R��

mm� = −� d2r W
mR�
* �r���2Wm�R���r�� , �15�

D
R� R��

mm���� =� d2r W
mR�
* �r������,r��Wm�R���r�� . �16�

With the help of the translational properties of both the Wan-
nier functions �Eq. �10�� and ���� ,r��, it is straightforward to
show that the system matrix itself exhibits translational sym-
metries,

M
R� −a� i,R

�
�−a� i

mm� ��� = M
R� ,R��

mm���� , �17�

with respect to both lattice vectors a� i, where i=1,2. We are
interested in the Bloch mode solutions of our model system
including the material dispersion, i.e., the Bloch modes
Enk��r�� of Eq. �11� or its representation within the Wannier
function approach �Eq. �13��. As alluded to above, this may
be facilitated within an on-shell approach. Therefore, we fix

the real frequency �, choose a direction k̂ in wave-vector
space, and determine the allowed complex-valued magni-

tudes k of the full wave vector k� =kk̂ so that their real parts
lie within the first BZ.

This is realized through several steps. First, we determine
suitable integer numbers � and 
 such that the reciprocal

lattice vector G� =�b�1+
b�2 is parallel to k̂. As usual, the re-

ciprocal basis vectors b� j, where j=1,2 are defined through

their orthogonality condition �a� i ·b� j�=2�	ij relative to the
real space lattice vectors a� i, with i=1,2.

Second, we define the real space lattice vectors s�
 =�a�1
+
a�2 and s��=�a�2−
a�1 that define the sides of the compu-
tational supercell employed in the on-shell computations. In
addition, we define a set of M lattice vectors ���, which con-

sists of the origin ��1=0� and all the sites ���, with �
=2, . . . ,M, inside the supercell formed by the vectors s�
 and

s��. As a consequence, any lattice site R� of the PC can
uniquely be expressed as

R� � R� ij� = i · s�
 + j · s�� + ���, �18�

such that the three integers i, j, and � determine a partition-
ing of the PC into supercells. This is illustrated in Fig. 5.
This partitioning facilitates a rewriting of Eq. �13� as



m�,i�,j�,��

M
R� ij�R� i�j���

mm� ���Em�R� i�j���
= 0, ∀ i, j,m,� . �19�

By construction, the Bloch-Floquet theorem �Eq. �6�� stipu-
lates a periodic boundary condition on the supercell in the
direction of s��; i.e., we have Enk��r�+ j ·s����Enk��r��. There-
fore, we obtain that EmR� ij�

=EmR� i0�
for all integers j.

Based on the above considerations and upon taking into
account Eq. �17�, we may rewrite Eq. �19� in a matrix form
that is suitable for band structure computations,



i�=−�

�

M̂i−i����E� i� = 0, ∀ i . �20�

Here, we have introduced the vectors E� i and submatrices M̂i
according to

E� i = �Em,R� i0�
, ∀ m,�	 , �21�

M̂i = � 

j=−�

�

M
R� ij�R� 00��

mm� , ∀ m,m�,�,��� . �22�

In a numerical implementation, we have to truncate these

infinite vectors E� i and submatrices M̂i by taking into account
a finite number NW of bands �or equivalently Wannier func-
tions�, i.e., m=1, . . . ,NW in Eqs. �20�–�22�, and a finite num-
ber L of coupled supercells, i.e., replacing � in Eqs. �20� and
�22� by L.

Following the approach of Ref. 8—originally developed
for calculations of waveguide dispersion relations in
PCs—we can now rewrite Eq. �20� in a transfer-matrix form

by defining the composite vectors F� i= �E� i ,E� i+1 , . . . ,E� i+2L−1	.
As a result, we obtain

F� i−1 = T̂���F� i, �23�

where the transfer matrix T̂���= �T̂i,j���	 has nonzero sub-
matrix entries of size M �NW
M �NW only for

T̂1,j��� = − M̂L
−1���M̂L−j��� for j = 1,2, . . . ,2L ,

�24�

a2

a1

s

s

ss

k

FIG. 5. �Color online� Illustration of the partitioning of real
space in order to facilitate an on-shell band structure calculation.

For a fixed frequency � and direction k̂ in reciprocal space, we
partition the PC into identical rectangular supercells whose sides
are given by s�
 =�a�1+
a�2 and s��=�a�2−
a�1, where � and 
 are

integers such that G� =�b�1+
b�2 is parallel to k̂. Periodic and Bloch-
boundary conditions are, respectively, applied along s�� and s�
. For
this illustration on a square lattice, we have chosen �=2 and 
=1,
so that a supercell contains five unit cells of the PC.
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T̂j+1,j = 1̂ for j = 1,2, . . . ,2L − 1. �25�

Here, we have denoted the M �NW
M �NW unit matrix by

1̂.
Finally, the combination of Eq. �23� and the Bloch-

Floquet theorem �Eq. �6�� allows us—at the given frequency

� and for the given direction k̂—to identify the Bloch modes

with wave vector k� =kk̂ as the solutions F� �n����, where n
=1, . . . ,2L�M �NW of the transfer-matrix eigenvalue prob-
lem,

T̂���F� �n���� = exp�ik�n��� · s�
	F� �n���� , �26�

with the required wave vectors k�n���=kn���k̂ 
G� .
These solutions exist for all frequencies. In the presence

of material absorption and/or for frequencies inside a stop

band in the direction of k̂, the wave vector k� will be complex
valued. Therefore, this complex dispersion relation k���� con-
tains the full band structure information, i.e., information on
dispersion and attenuation or absorption inside the PCs.

The accuracy of this Wannier function approach can eas-
ily be tested with the help of the reference band structure. In
particular, a comparison of the results of Eq. �26� with ab
initio computations of the reference band structure allows
one to assess the number of Wannier functions NW and the
maximal number of coupled supercells L required for obtain-
ing accurate results for the full system with dispersive con-
stituent materials �Eq. �11��. For instance, for wave-vector
directions lying along the �-X direction of the model PC, the
computational supercell contains M =1 unit cells. In addi-
tion, we require NW=18 Wannier functions and L=4 coupled

supercells, so that the resulting transfer matrices T̂ to be di-
agonalized are only 144
144 in size in order to obtain con-
verged results. This is considerably less than what is required
with other on-shell methods.

B. Extension of standard band structure methods

Standard band structure techniques14–16 that operate with
fixed real-valued wave vectors k� can be extended to deal
with the nonlinear eigenvalue problem of Eq. �4� for
frequency-dependent real-valued dielectric constants. This is
facilitated by performing computations for a certain set of
standard eigenvalue problems for frequency-independent di-
electric constants and a subsequent postprocessing of the cor-
responding data in order to solve the nonlinear eigenvalue
problem via an appropriate fix-point iteration.

Specifically, for our model problem, we identify a fre-
quency range of interest and determine the associated range
of variation of the pore dielectric constant’s real part over
this range. Next, we perform standard band structure compu-
tations for a set of �fictitious� frequency-independent real-
valued pore dielectric constants �fict, which covers this range.
As a result, we obtain—for the fixed wave vector k�—a series
of “frequency lines” �i��fict�, which reflect the variation of
eigenfrequencies of the individual bands �indexed through
the integer i� when this �fictitious� pore dielectric constant
�fict varies. Then, we obtain the physical eigenfrequencies we

are looking for by requiring consistency between these fre-
quency lines and the true real part of the system’s dielectric
constant �pore���. This provides us with the solutions ��k�� of
the nonlinear eigenvalue problem for fixed wave vector k�.
We may then repeat the procedure for the next wave vector.

We illustrate this fix-point iteration scheme24 in Fig. 6.
The dashed lines depict the variation of the first frequency
line �1��fict� as a function of the fictitious pore dielectric
constant �fict for three different wave vectors in the vicinity
of the X point. Note that for a more transparent interpretation
of the fix-point iteration, we have assigned the dependent
variable �fict to the ordinate. Then, the intersections �filled
circles� of these lines with the frequency-dependent real part
of the pore dielectric constant �pore��� �solid line� fulfill the
consistency condition alluded to above and, therefore, repre-
sent the physical eigenfrequencies of the system.

While this fix-point iteration scheme appears to be some-
what inefficient relative to on-shell methodologies and does
not directly allow one to address the issue of material ab-
sorption �imaginary part of �pc�� ,r���, it does provide an el-
egant geometric interpretation of the physics of PCs whose
constituent materials exhibit anomalous dispersion.

In particular, Fig. 6 suggests that over certain frequency
ranges with sufficiently strong anomalous material disper-
sion, three distinct solutions �n�k�� , n=1,2 ,3 associated with
a single frequency line �i��fict� may develop. This is in stark
contrast to frequencies away from the resonance where only
one solution is allowed. Owing to the facts that for finite
damping, the resonance covers only a finite frequency range
and that near a photonic band edge, only a finite region of
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FIG. 6. �Color online� Geometric illustration of the iterative
solution of the nonlinear eigenvalue problem associated with the
band structure of a PC with dispersive constituent materials. The
solid line depicts the frequency dependence of the real part of the
model system’s dielectric constant for a quantum-dot filling ratio of
�=0.03. The values of the other system parameters are given in the
text. The dashed lines display the frequency line �1��fict� of the first
band for three different but fixed wave vectors k�. The intersections
of these frequency lines with the graph of the model system’s di-
electric constant �circles� correspond to the iterative solutions of the
nonlinear eigenvalue problem of Eq. �4�.
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wave-vector space is of relevance, these imply that near a
photonic band edge and relative to the undoped reference
system, additional propagating states may develop, which are
limited to both a finite frequency and a finite wave-vector
range. This will lead to the formation of a closed bubblelike
object in the photonic band structure diagram of the undoped
system24 �see Fig. 9� and will be further elaborated in
Sec. IV.

C. Finite samples: Scattering-matrix approach

An experimental investigation of PCs usually requires the
measurement of reflectance and transmittance from finite-
sized samples. The analysis of such data may substantially
benefit from a comparison with corresponding computations.
For instance, reflectance and transmittance computations al-
low one to assess the fabricational tolerances of the struc-
tures and to assist in their design.26

In the present case, we are interested in estimating the
impact of material absorption and whether any effects de-
rived from the photonic band structure computations alluded
to above could be observed experimentally. In addition, we
will demonstrate below that the careful analysis of the length
dependence of the transmittance through finite-sized samples
at fixed frequency allows an alternative route for determining
the inverse attenuation length, i.e., the imaginary part of the
wave vector. The computation of the reflectance and trans-
mittance from periodic structure is a well-documented sub-
ject of diffractive optics,27–29 where it is often referred to as
the RCWA. In the context of PCs, it is more often known as
the scattering-matrix method.30 For our subsequent computa-
tions, we utilize our own implementation of the scattering-
matrix method30 enhanced with the correct Fourier factor-
ization techniques28,31 that significantly improve the conver-
gence properties of the approach.

In Fig. 7, we display the frequency dependence of the
transmittance �at normal incidence� through a finite-sized PC
�our model system with quantum-dot concentration �=0.03�
for several values of the sample thickness �measured in terms
of the number of unit cells N�. The sample is oriented such
that normal incidence corresponds to propagation along the
crystallographic �-X direction. In addition, we have chosen
the surface termination such that we cut right through the
middle of a row of pores of the infinite PC. Clearly, in our
transmittance or reflectance computations, we have refrained
from filling these slit open pores with the doped polymer. In
addition, we display complementary reflectance calculations
for the same structure in Fig. 8 �note, however, the different
scalings of the ordinates in Figs. 7 and 8�.

Taken together, Figs. 7 and 8 suggest that once the PC
sample exceeds a certain length �about 20 unit cells in our
example and considered frequency range�, the in- and out-
coupling processes to and from the sample have been decou-
pled such that for larger sample sizes, the transmittance is
only affected by the total attenuation within an effectively
bulk PC. Consequently, we may determine the total attenua-
tion length l� of the corresponding bulk PC for a fixed fre-
quency � by fitting the corresponding length dependence of
the transmittance T��N� to an exponential of the form

T��N�=C� exp�−Na / l��. This total attenuation length is con-
nected to the imaginary part of the complex wave vectors’
modulus in the corresponding crystallographic direction

k̂ 
�-X via Im�k����=1 / �2l��. For the actual calculations of
the attenuation length via transmittance computations, we
have analyzed the transmittance values for thicknesses rang-
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FIG. 7. Frequency dependence of the transmittance at normal
incidence for finite-sized PC samples with different thicknesses
�N=1,11,21,31,41,51 unit cells�. The PC is oriented such that
normal incidence corresponds to propagation along the �-X direc-
tion. The inset demonstrates that once the sample thickness exceeds
about 20 unit cells, the transmittance decays approximately expo-
nentially with thickness. This behavior should be compared with the
corresponding reflectance calculations displayed in Fig. 8. For ac-
tual calculations of the attenuation length, sample thicknesses in the
range of N=1, . . . ,100 with a step size of �N=1 have been ana-
lyzed. The PC parameters are given in the text.
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ing from 1 to 100 unit cells with a step size of 1. More
precisely, Fig. 8 shows that the reflectance does not change
within a 1% margin for frequencies below �a /2�c=0.243
and above �a /2�c=0.255 for sample thicknesses of N
�10 unit cells. This behavior originates in the absorptive
behavior of the material, which strongly suppresses the
Fabry-Perot oscillations that could be observed for
absorption-free systems. Therefore, in these frequency
ranges, the exponential could be fitted to the computed data
with N�10. However, for frequencies in between, this
damping out of the Fabry-Perot oscillations is less effective
and the reflectance approaches saturation only for sample
thicknesses of N�20 unit cells. As a consequence, the ex-
ponential fit should only be carried out for the corresponding
range of N�20. In order to be consistent, we have computed
the total attenuation length for all frequencies by fitting to
the data for N�20. In addition, we have checked that in
those cases for which we could fit to larger data sets, no
discrepancies occur.

IV. RESULTS

We now apply the computational methods described in
Sec. III to our model problem in Sec. II. First, the extended
band structure approach �Sec. III B� will be used to derive a
physical interpretation of the results. This will be followed
by a fully quantitative analysis through the Wannier function
technique �Sec. III A� and the scattering-matrix method �Sec.
III C�. The latter also allows one to assess the feasibility of
corresponding experiments.

We have chosen the parameters of our model system such
that the resonance of the pore dielectric constant �Eq. �2��
lies inside the photonic band gap of the undoped system,
close to the upper band edge of the first band gap �see Figs.
2 and 3�. This choice has been guided by the fact that the
Bloch modes associated with the second band near the X
point have a significant part of the field inside the pores.
Therefore, these modes are rather sensitive to any modifica-
tion of the pore properties.

For the time being, we disregard the imaginary part in the
pore dielectric constant and apply the extended band struc-
ture method to the problem with a quantum-dot concentra-
tion �=0.03. The resulting band structure is depicted in Fig.
9 and shows a significant splitting of the second band into
one continuous band and a bubblelike structure of finite ex-
tent in wave-vector space located partly inside the photonic
band gap of the undoped reference system.

Despite the fact that these frequencies appear inside the
photonic band gap of the undoped system, the associated
modes represent—in the present case of ignored material
absorption—bona fide extended Bloch modes, as they do
obey the Bloch-Floquet theorem. The occurrence of this
bubblelike structure is a direct consequence of the anoma-
lous dispersion over a finite frequency range provided by the
“energy-dependent” potential �pc�� ,r��, which directly trans-
lates into both a finite extent in frequency and wave vector of
the bubble. To the best of our knowledge, this does not have
an analogy in electronic crystals, although a potential func-
tion with a nonmonotonic variation in energy would allow a

similar effect to occur. Furthermore, the geometric interpre-
tation of this effect in terms of a fix-point problem �Sec.
III B� suggests that the effect can equally well be realized for
TE-polarized radiation in 2D PCs as well as in one-
dimensional and 3D PCs.

While these results of the extended band structure method
provide a physical understanding of the interplay of anoma-
lous material dispersion and photonic band structures, they
do not contain any information about the effect of the—by
the Kramers-Kronig relations unavoidable—material absorp-
tion. In particular, it is not clear whether this effect could be
observed for realistic experimental parameters.

Therefore, we proceed to a complete analysis of the
model system and discuss the frequency-dependent attenua-
tion length. As alluded to in Sec. III, this may be facilitated
both through the Wannier function method or the scattering-
matrix approach. In Fig. 10, we display and compare the
results of all three methods applied to the model system with
quantum-dot concentration �=0.03 for wave vectors ori-
ented along the crystallographic �-X direction. In the left
panel of Fig. 10, we compare the real part of the wave vec-
tor’s modulus of the Wannier function approach with the
results of the extended band structure technique. Clearly, the
extended band structure method cannot obtain a wave-vector
solution for frequencies in the stop gap. For the frequencies
of the propagating modes, the agreement is very good. Here,
we would like to recall that, in contrast to the extended band
structure method, the Wannier function approach fully in-
cludes material absorption. In the middle panel, we display
the imaginary part of the wave vector’s complex magnitude
as obtained from the Wannier function method. In the un-
doped reference system, we would expect that this imaginary
part is zero for frequencies in the bands, takes on small val-
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FIG. 9. �Color online� Photonic band structure for the model
system with quantum-dot concentration �=0.03 and when material
absorption is ignored �solid lines with symbols�. The anomalous
dispersion of the pore dielectric constant near the band edge of the
second band leads to the formation of propagating modes �lines
with diamonds� inside the photonic band gap of the undoped sys-
tem. For reference, the photonic band structure of the undoped PC
is indicated by dashed lines. The horizontal dotted line again depicts
the resonance frequency of isolated quantum dots.
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ues for frequencies slightly inside the photonic stop band
�weak attenuation� and, finally, takes on large values for fre-
quencies near the center of the stop gap �strong attenuation�.
Material absorption would only modify the actual values but
not the qualitative behavior. However, owing to the anoma-
lous material dispersion, we find very low values of this
imaginary part for frequencies near the bubble. Finally, in the
right panel of Fig. 10, we convert these values into attenua-
tion lengths and compare them with the results of corre-
sponding scattering-matrix computations. Besides a very
good agreement between the two methods, we find that the
values of the attenuation length for frequencies near the
bubble are in excess of ten lattice constants. This suggests
that transmittance experiments on 2D macroporous silicon
PCs9 should be able to directly observe this �unique� signa-
ture of the bubble.

The shape of the bubblelike structure created inside the
photonic band gap can be controlled through the parameters
entering Eq. �2�. For instance, different two-level systems
with different resonance frequencies, oscillator strengths, and
damping constants could be implanted into appropriate PC
backbones. In these cases, considerations similar to our dis-
cussion above about the overlap of the targeted mode profile
with the dopants’ location would have to be carried out.

In the experimental realization via colloidal quantum dots
that we have envisaged, the easiest tuning parameter might
be the concentration � of two-level systems. In Fig. 11, we
depict the evolution of the bubblelike structure and the at-
tenuation length of the corresponding modes as the concen-
tration � increases. The extension of the bubble both in
wave-vector space and in frequency is strongly modified.

Higher concentrations � allow a larger wave-vector and fre-
quency range to be covered. Furthermore, these results sug-
gest an alternative interpretation of the bubble formation.
Starting from a very low concentration of quantum dots, we
observe the onset of a “pinch-off” effect near the band edge.
For higher concentration, the bubble is completely separated
�completely pinched off� from the original band edge so that,
effectively, a stop band is formed. Whether or not this stop
band turns into a complete photonic band gap depends on the
other regions of wave-vector space, which are less affected
by the anomalous dispersion. This stop band is, however,
somewhat ill defined. This stems from the fact that the top
portion of the bubble, i.e., the flat part of the dispersion
relation, corresponds to the unstable branch of the anomalous
dispersion and, therefore, exhibits rather large values of the
imaginary part of the wave vector. It thus becomes problem-
atic to identify the lower frequency edge of the stop band. In
addition, for other materials that exhibit a two-level reso-
nance structure in their dielectric behavior such as systems
for which interband transitions are of importance, there does
not exist a simple analog to the change of quantum-dot con-
centration. Therefore, we prefer the first interpretation that
anomalous dispersion may lead to additional propagating
modes inside the photonic band gap of the undoped system.

At any rate, the resulting tunability of the wave vector and
frequency extent of the bubble structure may be beneficial
for efficient realizations of superprism effects and other
super-refractive phenomena.32 Specifically, it might be ad-
vantageous to avoid unwanted diffraction effects by limiting
the available wave vectors, while simultaneously allowing
only narrow frequency bands to couple into the PC. Equally
well, one might conceive a modulator via tunable attenua-
tion.

V. SUMMARY

We have investigated photonic band structures for PCs
whose constituent materials exhibit anomalous dispersion. In
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such systems, anomalous dispersion leads to the occurrence
of unconventional propagating modes in the gap. The solu-
tion of the corresponding nonlinear eigenvalue problem
through an iterative approach allows a simple geometric in-
terpretation of the fact that the limited frequency range over
which anomalous dispersion occurs confines these additional
modes to a limited wave-vector range in the band diagrams.
For the calculation of attenuation lengths associated with
these modes, we have developed an efficient on-shell meth-
odology based on photonic Wannier functions. The results of
this approach agree very well with those from corresponding
transmittance computations and suggest that these modes
should be experimentally observable. PCs that exhibit such
effects may be realized by infiltrating colloidal quantum
dots in a polymer suspension suitably engineered into

macroporous silicon PC structures. This technique has been
demonstrated.10,11 The resulting tunability of PC structures
with dispersive components may lead to an enhanced flex-
ibility in tailoring photonic dispersion relations and associ-
ated phenomena such as super-refractive effects.
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