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Abstract: We have studied the optical response of chiral metastructures composed of a 
disordered array of couples of plasmonic Au nanorods helically piled along the vertical 
direction. The fabrication is based on the use of multiaxial and multimaterial evaporation of 
the different metastructure building blocks through nanohole masks. From the analysis of the 
Mueller Matrix elements of the system, obtained both experimentally and from dedicated 
numerical simulations in forward and backward illumination conditions, we have been able to 
determine the linear and circular dichroic response of the system, as well as to sort out the 
optical anisotropy and intrinsic circular dichroism contributions to the circular differential 
extinction. We have also analyzed the dependence of the optical properties as a function of 
the angle between the rods and of the thickness of the dielectric separator. The study of quasi-
planar as well as three-dimensional structures allows unraveling the role played by 
interactions between the constituting building blocks and, in particular, the distance between 
rods. We have experimentally and theoretically observed a decrease of the circular dichroic 
contribution and a change of the optical anisotropic contribution when the structures evolve 
from non-planar to planar. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Metastructures with tailored optical response can be obtained by smart spatial combination of 
different, simple building blocks exhibiting well-known optical properties. The individual 
properties and the specific spatial localization, either in two- or three-dimensions, allow 
obtaining complex systems with properties, ruled now via interactions, not achievable 
otherwise. A versatile plasmonic building block is the metallic rod, whose plasmonic 
resonances can be spectrally tuned by material and dimensions choice. Besides, they respond 
differently to light polarized along the principal axes of the rod [1,2]. Actually, this 
asymmetry in the optical response lies behind the development of different types of 
polarization-sensitive devices. When arranging rods in a 2D or 3D fashion, the 
electromagnetic interaction between them induces new optical properties [3–6]. For example, 
structures with linear and circular dichroism can be obtained just by combining different in-
plane inter rod orientations with a smart piling up of them. The simplest example is vertically 
stacking two rods with their long axes twisted with respect to each other, making rods dimers 
good candidates for chiral sensing applications [7]. 

The fabrication of these 3D stacked rod dimers can be approached in different ways. For 
example using multistep lithographic (electron beam lithography and vacuum deposition 
techniques) or chemical routes. Using multistep electron beam lithography and vacuum 
deposition, dimers with inter rods distance of more than 40 nm and with variable relative 
orientation between the rods have been fabricated [8–11]. Alternatively, using chemical 
routes, dimers with inter rod distances of only a few nanometers, but with a much less 
accurate control of the relative orientation between the rods, have also been obtained [12–16]. 
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intermediate samples are included. (e) SEM image of the chiral metasurface with top rod at 
45° obtained in this way. 

Despite its versatility, the described fabrication method presents some intrinsic 
shortcomings that condition the actual choice on dimensions for the different elements, and 
on whose existence one must be aware. One of the drawbacks is the limitation in controlling 
of the spatial arrangement of the structures. Although it is possible to precisely stack the 
structures, the planar spacing is difficult to manage. The most relevant disadvantage is the 
gradual reduction of the diameter of the nanoholes in the mask, due to the accumulated 
material during deposition at oblique incidence [27]. As a consequence, the final elements in 
the metastructure are narrower and, for the same substrate oscillation span, shorter. This 
gradual hole diameter reduction also limits the total amount of deposited material and 
consequently the total height of the metastructure. As a consequence, the typical dimensions 
when the deposited heights of the different elements of the metastructure are 12nm Au/6nm 
CaF2/12nm Au/3 nm Ti/0.5mm BK7 result to be: (i) widths and lengths are 95 nm and 235 
nm for the bottom rod and are 75 nm and 220 nm for the top rod, (ii) diameters of 20nm thick 
CaF2 pillars are 135nm and 100nm, respectively. 

3. Results and discussion 

The optical properties of the samples have been studied using a spectroscopic ellipsometer 
(SE, M200Fi J. A. WoollamCo.) in transmission mode at normal incidence in the 400-1600 
nm spectral range. In spectroscopic ellipsometers with PCSA configuration of the optical 
elements (polarizer, compensator, sample and analyzer), the elements of row 4 of the Mueller 
matrix (m41, m42, m43 and m44) cannot be obtained due to the lack of a second compensator 
[28]. From symmetry considerations, we have used a valid method based on measurements 
with sample illumination from the metastructures side (Front-F) or from the substrate side 
(Back-B) [29,30]. This allows, for example, to discern the different contributions of the 
system to the circular differential extinction [26,31]. The sample was mounted on a rotational 
stage which allows changing the in-plane orientation of the sample. Following this procedure 
it is possible to obtain the Mueller Matrix Elements (MME) of the system [28,32], containing 
full information about different optical aspects of the system [33,34]. As schematically 
indicated in the left of Fig. 2, in transmission mode, the element m12 is directly related to the 
absorption difference for light that is polarized parallel or perpendicular to the x-axis (m12 = 
(IX-IY)/2, linear dichroism (LD)). On the other hand, m13 is related to the difference in the 
absorption of light polarized parallel and perpendicular to an axis rotated 45 degrees with 
respect to the x-axis, x’-axis, (m13 = (IX’-IY’)/2, linear dichroism at 45° (LD’)). Finally, m14 is 
related to the difference in transmission for left- and right-handed circularly polarized light 
(m14 = (IR-IL)/2 or circular differential extinction (CDE)). The measured MME are normalized 
to the element m11, which is the total transmission intensity of the sample [28]. In Fig. 2 we 
show the measured MME for three fabricated structures, namely single Au nanorods with 
CaF2 pillars symmetrically positioned at both sides of the rods, and complete Au rod dimers 
at 45° and −45 degrees respectively with 6 nm thick CaF2 dielectric rods separating them. 
SEM images for individual structures are also shown. For the experimental determination of 
the MME, the samples were carefully aligned in the plane so that the long axes of the Au rods 
close to the substrate were oriented along the y-axis. 

For the single Au rod layer (left-hand column), the y-polarized light only excites the 
resonance along the principal axis of the rod, which is located at a lower energy than the 
corresponding for the short axis (only excited using x-polarized light). Therefore, the m12 
element has a sigmoidal spectral shape, with a negative dip centered at the position of the 
long axis resonance of the rod and a positive peak at the position of the short axis resonance. 
On the other hand, light polarized along x’ or y’ axes excites, in equal footing, long and short 
axes resonances and, as a consequence, the m13 values for all the wavelengths are zero. The 
same occurs for the circular differential extinction value, m14. 

                                                                                        Vol. 27, No. 15 | 22 Jul 2019 | OPTICS EXPRESS 21144 



A comple
(center and ri
shape resemb
the bottom ro
presence of t
resonances fo
The m12 spect
from 45° to –
On the other h
a change in si
at 45°, the x’
longitudinal a
transverse mo
bottom rod. H
x’- and y’-po
zero for these
change in sign

Fig. 2
differe
Left h
2(a)-2
45° an
Figure

In short, t
the system, le
the relative al
has contributi
optical anisot

etely different 
ight-hand colu

bling that obtai
od in the dime
the ± 45° top 
or y- and x-pol
tra have the sa

– 45° does not a
hand, the prese
ign in m13 due
’-polarized ligh
and transverse
ode of the top r
However, for −
olarization for 4
e two dimers, d
n of the twist. 

2. Definition of th
ent fabricated me
hand side: schema
2(c) Linear dichro
nd rod dimers plac
es 2(g)-2(i) Circul

the presence of
eading to addit
lignment betw
ions from both
tropies such as

behavior is ob
umn). First, m
ined for the ind
ers still domina

rod, modifies 
larized light, a

ame sign for bo
alter the symm
ence of the upp
 to the change
ht excites the 

e modes of the
rod and again p
−45° y’- and x
45°. Finally, th
due to their tw

he MME consider
tasurfaces. Upper 

a of the configurat
ism, m12, is presen
ced at −45° respec
ar differential exti

f the top rod in
tional linear an

ween top and bo
h its optical a
s linear dichro

bserved for th
12 is very simi
dividual Au ro
ates the linear 

it, due to bot
and very likely
oth dimers, bec

metry of the sys
per rod at ± 45
e of relative ori

longitudinal m
e bottom rod, 
partly both lon
’-polarized lig
he circular dif

wisted structure

red in this work a
part: SEM image

tion of the axes th
nted for single rod
tively. Figures 2(d
inction, m14. 

nduces a break
nd circular dich
ottom rods. No

anisotropy (OA
oism and linear

he rod dimers 
ilar for both c

od, but less pro
dichroic respo

th the excitati
y to interaction
cause the rotati
stem with respe
5° leads now to
ientation of the
mode of the to

while y’-pola
ngitudinal and t
ght excite the m
fferential extin
e, and the chan

and their spectral 
es of the fabricate

hat define the MM
d with pillars, rod
d)-2(f) Linear dich

king down of t
hroism signals,
ow, the CDE 

A), which is a
r birefringence

at 45 and −45
cases, with a s
onounced. Eve
onse of the sy
ion of its char
ns with the bo
ion of the uppe
ect to the X an

o a non-zero m
e top rod: for t
op rod, and pa
arized light ex
transverse mod
modes correspo
nction, m14, is a
nge in sign is d

evolution for the
ed metastructures

ME shown. Figures
d dimers placed at
hroism at 45°, m13

the optical sym
, whose sign d
obtained in th

a linear combin
e; and intrinsic

5 degrees 
sigmoidal 
en though 
ystem, the 
racteristic 
ttom rod. 
er Au rod 
nd Y axis. 

m13, and to 
the dimer 
artly both 
xcites the 
des of the 
onding to 
also non-

due to the 

 

e 
. 
s 
t 
. 

mmetry of 
depend on 
is system 
nation of 
c circular 

                                                                                        Vol. 27, No. 15 | 22 Jul 2019 | OPTICS EXPRESS 21145 



dichroism (CDin). It is known that, in complex systems with small anisotropies where these 
two effects (optical anisotropy and intrinsic circular dichroism) coexist, it is possible to 
separate their contributions to the CDE by carrying out forward and backward experimental 
measurements, since these two magnitudes behave differently for forward and backward 
illumination [26,33]. The experimentally measured circular differential extinction can be 
decomposed in the intrinsic circular dichroism and optical anisotropy components (CDE = 
CDin + OA) where 

 

14 14

14 14

2

2

F B

F B

in

m m
CD

m m
OA

 +
=  
 
 −

=  
 

 (1) 

It is worth noticing that the Eq. (1) is a valid approximation in the range of values of CDE 
that we are studying. The real values of the CDE can be extracted from the differential 
Mueller matrix elements [31,35–37]. It should be mentioned that the sources of the optical 
anisotropy are the preferential in plane ordering of the structures in the array configuration, as 
well as effects to the overlapping dimer. Therefore, it is possible to apply this methodology 
thanks to the correlated orientation of all the rods dimers between each other provided by the 
specific fabrication technique. This would not be possible in systems presenting a random 
orientation of rod dimers, such as those obtained by chemical methods, where the anisotropic 
contribution to the circular differential extinction cancels out [10]. 

In the left column of Fig. 3 we present the spectral dependence of m14 for forward and 
backward illumination for both types of dimers. As it can be observed, the forward and 
backward spectra of these layers are different, highlighting the presence of the two 
contributions. On the other hand, comparing the spectra of the two samples they are, both for 
forward and backward illumination, mirror images of each other (Figs. 3(a) and 3(d)), due to 
their opposite twist sign. As mentioned before, with this kind of measurements, the two 
contributions (optical anisotropy and intrinsic circular dichroism) to the circular differential 
extinction can be obtained, and the results are shown in Figs. 3(b) and 3(e) and in Figs. 3(c) 
and 3(f). As it can be observed, the spectral shape of the two contributions is different: the 
intrinsic circular dichroism contribution (CDin) has a sigmoidal like shape, whose sign depend 
on the relative arrangement of the dimers, whereas the optical anisotropy contribution (OA) 
consists of a broad peak, whose sign also depends on the twist. Minor differences on the 
spectral dependencies of these magnitudes for both dimers are due to the lack of perfect 
morphological reproducibility in the fabrication of these mirror structures. 
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existing morphological details is a great challenge. For example, it is worth noticing that, 
since in the modeling all interfaces are crisp and defect free, the CDin keeps governing the 
CDE down close to the planar case. In the experimental case the spacer free system already 
shows an almost vanishing the intrinsic CD contribution, which we attribute to the natural 
fabrication constrains, such as porosity, misalignments (especially in the height of the 
auxiliary pillars) that largely affects the CDin and tends to increase the optical anisotropy. 

4. Conclusions 

We have fabricated Au nanorod dimers helically stacked with different relative orientations 
and separation between them using a single deposition run technique. We have addressed the 
dependence of their linear and circular dichroism performing a careful analysis of the Mueller 
Matrix Elements obtained from both experimental measurements and dedicated FDTD 
numerical simulations. We have shown that there is a nearly proportional increase of the 
intrinsic circular dichroic contribution, and a dramatic change of the optical anisotropic part 
when departing from the planar situation. These findings highlight that the contributions to 
circular differential extinction can be controlled by carefully acting on the morphology of the 
sample. 
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