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Abstract: Based on an already tested laboratory procedure, a new magnetron sputtering methodology
to simultaneously coat two-sides of large area implants (up to ~15 cm2) with Ti nanocolumns in
industrial reactors has been developed. By analyzing the required growth conditions in a laboratory
setup, a new geometry and methodology have been proposed and tested in a semi-industrial scale
reactor. A bone plate (DePuy Synthes) and a pseudo-rectangular bone plate extracted from a patient
were coated following the new methodology, obtaining that their osteoblast proliferation efficiency
and antibacterial functionality were equivalent to the coatings grown in the laboratory reactor on small
areas. In particular, two kinds of experiments were performed: Analysis of bacterial adhesion and
biofilm formation, and osteoblasts–bacteria competitive in vitro growth scenarios. In all these cases,
the coatings show an opposite behavior toward osteoblast and bacterial proliferation, demonstrating
that the proposed methodology represents a valid approach for industrial production and practical
application of nanostructured titanium coatings.

Keywords: magnetron sputtering; oblique angle deposition; nanostructured titanium thin films;
antibacterial coatings; osteoblast proliferation; industrial scale

1. Introduction

Addressing the problem of infection from the very first stage, i.e., inhibiting the formation of
the bacterial biofilm, is a crucial step to prevent bone implant rejection. Recent studies indicate that
nanostructured surfaces can be a less aggressive alternative to antibiotics to avoid infections [1,2], with
the additional advantage of improving the behavior of osteoblasts, the cells that regenerate bone [3,4].
In this regard, the fabrication of nanostructured surfaces that may simultaneously favor the growth of
osteoblasts and hinder bacterial proliferation represents a milestone in this research field with important
implications, not only regarding the quality of life of patients but also by promoting a new generation
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of orthopedic implants. In the last few years, various alternatives have been proposed to induce such
selective behavior, either by using nanostructures that incorporate drugs or bactericidal elements
such as silver [5–7], or by surface processing with a strong corrugation at the nanoscale [8,9]. In our
earlier work in 2015, we manufactured nanostructured coatings made of titanium (Ti) nanocolumns
by oblique angle deposition (OAD) with magnetron sputtering onto the surface of Ti-6Al-4V discs,
one of the alloys most commonly used in orthopedic implants. In vitro experiments showed that
these nanocolumnar Ti coatings exhibited an efficient antibacterial behavior against Staphylococcus
aureus (the bacterial adhesion decreased, and biofilm formation was prevented) without altering their
biocompatibility (the osteoblasts proliferated and retained their mitochondrial activity) [10]. Moreover,
in a more recent work, we have shown that these coatings also render similar antibacterial functionality
against gram-negative bacteria (Escherichia coli) and, what is more important in order to have a direct
impact in the field of medical implants, that these coatings could be prepared on small areas (~1 cm2)
either in a laboratory setup or in a semi-industrial scale equipment [11].

In this paper, we analyze the practical use of these coatings and their fabrication on larger scales,
an aspect that is mandatory for the development of actual applications [12]. In general, regarding
the minimization of costs and other economic and throughput issues, turning laboratory-size devices
into operational market-ready products is a crucial engineering challenge that requires scaling up
laboratory procedures to large area and mass production [13]. This issue is quite evident when using
the magnetron sputtering (MS) method: By this technique, a plasma is made to interact with a solid
target in a vacuum reactor, producing the sputtering of atomic species from a well-defined race-track
region, and their deposition on a substrate located a few centimeters away [14]. In a classical MS
configuration, the substrate is placed parallel to the target, producing the growth of highly compact
and dense coatings, in a process that has been easily scaled up to mass-production methods by simply
building larger versions of laboratory reactors [15]. Following this methodology, the magnetron
sputtering technique has demonstrated being of great utility for the production of market ready devices
in microelectronics [16], optical coatings [17], or sensors [18], among other devices and products [19–23].
Unlike the classical configuration, the OAD geometry promotes the arrival of sputtered atoms at the
substrate along an oblique direction, inducing surface shadowing mechanisms and the formation
of nanocolumnar arrays, which has been usually achieved by rotating the substrate with respect to
the target in laboratory-scale procedures. However, due to the strongly non-linear nature of these
atomistic processes, scaling up the OAD methodology from laboratory to mass-production scales is
not straightforward, requiring the development of new approaches [24,25] and reactor designs [26],
issues that have scarcely been addressed in the literature [27,28].

In this line, herein we develop a new engineering approach to coat with Ti nanocolumns two
sides of bone plates with areas up to ~15 cm2 that are commonly used to immobilize bone segments,
and would be adequate for the development of this and other biomedical applications. To set up this
new methodology we proceeded in the following way: We first analyzed the fundamental conditions
leading to the formation of the nanocolumnar structures in a laboratory reactor, in particular, the energy
and angular distribution of sputtered particles ejected from the magnetron target; then, based on these
results, we proposed a new geometry to operate at oblique angles in semi-industrial reactors that
reproduces these energy and momentum distributions at much larger scales. To prove the feasibility of
the proposed design, we homogeneously and simultaneously coated the two sides of relatively large
substrates and analyzed whether the antibacterial functionalities were the same as those obtained
on surfaces manufactured in a laboratory MS reactor. In particular, two kinds of experiments were
performed: Bacterial adhesion and biofilm formation, and osteoblasts–bacteria competitive in vitro
assays, the latter also named the “Race for the Surface” competition [29].

2. Experimental Setup

The Ti coatings were first grown in a MS laboratory setup described in detail in reference [30] that
from now forth will be dubbed l-reactor (see Figure 1a). It has a magnetron head (AJA Inc., MA, USA)
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with a circular 5 cm diameter Ti target and a cylindrical 9 cm long metallic chimney that collimates the
flux of sputtered material and traps many of the thermalized atoms. The base pressure in the reactor is
in the order of 10−7 Pa and the distance between target and substrate is 22 cm. The parameters used
to fabricate the columnar coatings in this reactor with Ar as sputter gas [30] are: Pressure = 0.15 Pa,
power (DC discharge) = 300 W, and tilt angle of the substrate with respect to the target α = 80◦.
The semi-industrial scale reactor, which will be called i-reactor hereafter, operates at the company
Nano4Energy (see Figure 1b). The target is rectangular and much larger (20 × 7.5 cm2) and, as a result
of its balanced magnetic configuration, exhibits a racetrack with the shape of a rectangle (the long and
short sides being 13.5 and 4.2 cm, respectively) with lines that are about 3 mm wide.

Figure 1. (a) Laboratory and (b) semi-industrial reactors employed to grow the Ti nanocolumns.

As a first step to scale up the growth conditions from the l-reactor to the i-reactor, we have
employed as substrates fixation plates used in open trauma fractures that are known for their high
postoperative infection rate (15% for patients with good health and more than 20% if they belong to
risk groups). We coated two different fixation plates provided by Dr. Ricardo Larrainzar, Head of
the Orthopedic Surgery and Traumatology Department at the “Infanta Leonor” University Hospital,
Madrid. One of them was a new tubular plate from DePuy Synthes (made of stainless steel with length
5.2 cm, width 0.9 cm, and thickness 1 mm, with convex and concave sides), while the other was a
pseudo-rectangular plate extracted from a patient and properly sterilized (with length 12 cm, width
1.3 cm, and thickness 4 mm). For depositions in the i-reactor, we used the following methodology:
In the first stage, the plate was immersed in the plasma for cleaning purposes (pulsed DC voltage at
150 KHz, −500 V bias voltage, and a pressure of 1.2 Pa), after which the plate was left to cool down
for 30 minutes. In the second stage, the Ti coating was deposited using the particular geometrical
configuration presented in the Results and Discussion section. The deposition conditions were: Ar
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pressure = 0.4 Pa, power (DC discharge) = 325 W, and time = 25 min. Under these conditions,
the deposition rate was ~12 nm/min and the thickness of the films about 300 nm. Finally, for the
competitive studies between bacteria and osteoblasts, medical grade Ti-6Al-4V disks were also coated
in the i-reactor and used for comparison with the large area sample results.

The microstructure of the coatings was studied with two different techniques: Scanning electron
microscopy (SEM) with a Verios 460 field emission microscope (FEI Company, Hillsboro, OR, USA)
using secondary electron detection, and atomic force microscopy (AFM) with a Dimension Icon
microscope (Bruker Corporation, Billerica, MA, USA) that operates in a non-contact mode and type
PPP-FM commercial probes,) (Nanosensors, Neuchâtel, Switzerland).

To check the antibacterial properties of the coatings, the DePuy Synthes bone plate was introduced
in a solution of S. aureus bacterial strain (108 bacteria mL−1) (15981 laboratory strain, ATCC, Manassas,
VA, USA) and incubated for 24 h in a 66% tryptic soy broth (TSB) + 0.2% glucose environment to
promote biofilm formation (20 g L−1 of Difco Bacto TBS (Becton Dickinson, Sparks, MD)). After 24 h,
the plate was washed three times with sterile phosphate-buffered saline (PBS), stained with 3 µL of
SYTO-9/propidium iodide mixture, incubated for 15 min and washed with PBS. To determine the
formation of the biofilm, we used calcofluor, a fluorescent dye that has been used to stain the biofilm
extracellular matrix. In this case, 1 mL of calcofluor solution (5 mg mL−1) was used after the addition of
the SYTO-9/propidium iodide mixture and was incubated for 15 min at room temperature. The formation
of the biofilm was examined using a SP2 confocal laser scanning microscope (LEICA, Wetzlar, Germany).
In this way, live and dead bacteria could be distinguished, with green and red, respectively, as well as the
extracellular matrix of the biofilm with blue. Further details can be found in reference [10].

To further evaluate the antimicrobial activity of the nanostructured coatings, we carried out
osteoblasts–bacteria competitive in vitro studies using the coated and uncoated regions of Ti-6Al-4V
disks described above. For this purpose, co-cultures of MC3T3-E1 preosteoblast-like cells from mice
(Sigma-Aldrich, San Luis, MO, USA) [31] and S. aureus [10] were co-cultured over uncoated surfaces
and on surfaces coated with the Ti nanocolumns. Two different scenarios were simulated: i) Accidental
infection (S. aureus concentrations of 102 cfu/mL), and ii) osteomyelitis scenario (S. aureus concentrations
of 106 cfu/mL). In both cases, the S. aureus suspensions were mixed with 104 cells/mL of MC3T3-E1
preosteoblast, suspended in Todd Hewitt broth (THB) and complete Dulbecco’s modified Eagle’s
medium (DMEM) and simultaneously seeded on the samples. After 6 h of culture, confocal microscopy
studies were done and lactate dehydrogenase (LDH) levels were measured as a parameter of osteoblast
destruction. In this regard, for confocal microscope, the actin of preosteoblast cytoskeleton was
stained with Atto565-conjugated phalloidin (red) and both cell nuclei and bacteria were stained with
DAPI (blue). Moreover, LDH level was determined in the culture medium, which is directly related
to the rupture of the plasmatic membrane, (cell death) which, when broken, releases all organelles
and enzymes present in the cytoplasm. Measurements were performed by using a commercial kit
(Spinreact, Girona, Spain) having an absorbance at 340 nm with a UV–Visible spectrophotometer. Two
measurements of three independent experiments were carried out. All data are expressed as means
± standard deviations of a representative of three independent experiments carried out in triplicate.
Statistical analysis was performed using the Statistical Package for the Social Sciences (SPSS) version
19 software (IBM, Armonk, NY, USA). Statistical comparisons were made by analysis of variance
(ANOVA). Scheffé test was used for post hoc evaluations of differences among groups. In all of the
statistical evaluations, p < 0.05 was considered as statistically significant. The most representative
confocal images are shown in this study.

3. Results and Discussion

3.1. From Laboratory to Industrial Reactors

In order to scale up the deposition procedure developed in the l-reactor we employed a well-known
model to analyze the conditions required to grow the nanocolumnar films. In Figure 2a, we show the



Nanomaterials 2019, 9, 1217 5 of 13

polar angle of incidence of sputtered Ti atoms on the tilted substrate in the l-reactor in our experimental
conditions, as obtained by the SIMTRA code [32,33]. There, we can appreciate that the most probable
angle of incidence over the substrate in this configuration is ~80◦, which is above the calculated angular
threshold of about ~70◦ required to promote the formation of the nanocolumns [30,34]. Moreover,
as indicated in Figure 2a, there is a fraction of deposition species that arrives with lower angles of
incidence, which corresponds to those atoms that have experienced collisions in the plasma and have
altered their original steering [35]. The kinetic energy distribution function of these Ti atoms is shown
in Figure 2b, and it is characterized by a long tail that extends up to energies above 10 eV, where
the existence of numerous deposition species with kinetic energy above surface binding energy of Ti
(~5 eV) is clear, i.e., with enough energy to induce kinetic energy-induced displacement processes of
surface atoms upon deposition [30]. Using these distributions, we solved the model developed in
reference [30] to account for the growth of Ti thin films by MS. The solution, presented in Figure 2c,
shows a typical nanocolumnar array very similar to those experimentally obtained in reference [30],
supporting that the necessary conditions for the growth of the Ti nanocolumns on a flat surface, as
reported in reference [10], must also hold in the present case: i) The preferential angle of incidence
of Ti sputtered species onto the surface must be centered at about ~80◦ with respect to the substrate
normal, and ii) the kinetic energy distribution of deposition species must contain a significant fraction
of atoms with energies above the binding energy of Ti surface atoms, i.e., ~5 eV.

Figure 2. First row: (a) Polar angle distributions and (b) kinetic energy distributions of incident Ti
atoms with respect to the surface normal in the l- and i-reactors (i.e., laboratory scale and semi-industrial
scale, respectively). Second row: Solution of the model for the conditions in (c) the l-reactor and
(d) the i-reactor.

Based on the results outlined above, we focused on reproducing both angular and kinetic energy
distribution functions when operating the i-reactor on larger surfaces. In this way, and given the target
and reactor geometry, we propose the geometrical arrangement shown in Figure 3. There, we placed
the substrate perpendicular to the target, in such a way that atoms steaming from the racetrack may
reach the substrate along an oblique angle of ∼ 80◦. Moreover, this particular configuration ensures
that both sides of the substrate could be coated simultaneously. In Figure 2a, we show the calculated
profile of the incident angle distribution of Ti species under this new configuration, where we can
notice the similarities with that obtained in the l-reactor. This similarity extends to the kinetic energy
distribution functions (see Figure 2b). In Figure 2d, we also show that the calculated nanostructure



Nanomaterials 2019, 9, 1217 6 of 13

of the films in the i-reactor is formed by a nanocolumnar array, very similar to that obtained in the
l-reactor (Figure 2c), suggesting the adequacy of the geometrical approach presented in Figure 3.

Figure 3. Proposed geometry ((a) cross-sectional and (b) front views) to coat the implants on two sides
simultaneously with Ti nanocolumns.

3.2. Coating the Tubular Plate from DePuy Synthes

Following the geometrical configuration presented in Figure 3 and the conditions described in the
Experimental Setup section, we coated the DePuy Synthes plate in the i-reactor. A mask protecting
circa a quarter of the plate was employed to have an uncoated zone for the sake of comparison when
performing in vitro analyses (see Figure 4). Scanning electron microscopy (SEM) and atomic force
microscopy (AFM) were used to characterize the morphology of the coating, although the latter
technique could only be applied on the convex side, as the tip holder of the microscope crashed with
the lateral edges of the plate when approaching the concave surface. The uncoated zone presented a
mirror-like brightness, indicative of small roughness. In agreement with this visual observation, both
SEM and AFM images of this zone (not shown) indicate the absence of gaps or noticeable bumps on
the surface, while the RMS roughness measured with the latter technique was 4 nm.

Figure 4. Different views of the DePuy Synthes plate coated in the i-reactor. A mask protecting about
a quarter of the plate was used in order to have an uncoated zone to allow for comparison when
performing in vitro analyses.

Figure 5a shows an AFM topographic map taken on the coated zone (convex side of the plate).
It is worth noting the good homogeneity of the coating and the existence of a microstructure that
consists of regularly separated nanocolumns. Figure 5b,c shows SEM images of the coating that were
obtained on the convex and concave sides of the plate. The former shows a well-distributed and
homogeneous Ti nanocolumnar array, very similar to those arrays obtained under laboratory conditions
in references [10,30]. However, on the concave side, even though the coating is also homogeneous
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and consists of nanocolumns, these are now smaller both in diameter and length and are well packed,
resembling a film with a rather compact structure. This means that, due to the curvature of the concave
side of the substrate, sputtered atoms arrive at the surface with an angle of incidence below 80◦ at some
locations, resulting in structures similar to those found in the l-reactor for lower angles of incidence [30].
This difference could be minimized by placing the substrate closer to the target in Figure 3b, thus
promoting the arrival of sputtered species along higher polar angles of incidence.

Figure 5. Microscopy images of the DePuy Synthes plate after deposition of Ti nanocolumns: (a) Atomic
force microscopy (AFM) topographic map of the convex side of the plate; (b) SEM image of the
nanocolumnar structures in the convex and (c) concave side of the plate.

3.3. Coating of Pseudo-Rectangular Plate Extracted from a Patient

As an additional test of the geometrical arrangement presented in Figure 3, we analyzed the
microstructure and morphology of a pseudo-rectangular plate extracted from a patient, as described
in the Experimental Setup section. This plate was so large that it did not fit the entrance gate of the
observation chamber of the SEM equipment and could only be analyzed by AFM. The initial gloss of the
plate, which is rather matt instead of mirror-like, indicates that its roughness is high [36] (see Figure 6).
To ascertain this, we performed a study of its morphology before the coating process. Figure 7a shows
representative AFM images obtained in areas with different scale sizes (left and right of the figure,
respectively) before deposition. On the higher magnification scale, the plate has a RMS roughness
of 7 nm. However, in the image obtained in the same area but over a wider field of view (8 micron
side), it can be seen that these flat areas are separated by deep cracks, with depths above one micron.
This implies that, after the deposition process, most cracks will remain uncovered because their walls
cast a shadowed region that avoids the arrival of most atoms inside, preventing the formation of
nanocolumns. Consequently, the coatings will be inhomogeneous and there will be a large part of the
implant surface (i.e., smooth areas of the initial surface) exhibiting well-formed nanocolumns, while a
small percentage of it (deep cracks) will remain uncoated.

Following the sputtering process, the surface of the plate darkened considerably (c.f., middle and
bottom panel in Figure 6), which indicates that a nanostructured coating has been successfully formed
on both sides [37]. Figure 7b,c contains representative AFM images of the obtained coatings on both
sides of the implant, upper and lower, respectively. They are composed of titanium nanocolumns, with
a non-uniform distribution that depends on the morphology of the plate in each specific region: The
columns grown on flat areas do have the same height, but those grown on the walls of the holes have
lower height, as the initial surface was deeper. For example, Figure 7c shows an area with a very deep
crack (depth about 1 micron) where it can be appreciated that the height of the columns is maximum
at the top and gradually decreases when moving into the crack, until no columns are formed at the
bottom. Overall, the columnar morphology of the coating is remarkably similar to that obtained on
small substrates in the l-reactor in references [30] and [10].
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Figure 6. Photographs of the pseudo-rectangular plate extracted from a patient, before and after
deposition of Ti nanocolumns.

Figure 7. AFM images of the pseudo-rectangular plate extracted from a patient, obtained in areas
with different size (left and right of the figure, respectively): (a) Before deposition; (b) top side after
deposition; and (c) bottom side after deposition.

3.4. Bacterial Adhesion and Biofilm Formation

Once we had checked the nanocolumnar topography of the coatings produced in the i-reactor,
we analyzed whether these maintain the same functionality as those produced in the l-reactor, i.e., if
they are biocompatible and possess antibacterial capability. Following the bacterial growth procedure
described in the Experimental Setup section, live and dead bacteria could be distinguished, with green
and red, respectively, as well as the extracellular matrix of the biofilm with blue. Results appear in
Figure 8, where we can clearly notice the bacterial proliferation on the uncoated region of the plate,
which contains numerous living and dead bacteria, along with numerous blue staining, typical of
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extracellular matrix on the bacterial colonies. However, this blue stain does not appear in the coated
zone in Figure 8, indicating the absence of bacterial biofilm in this case.

Figure 8. Antimicrobial activity in an osteoblasts–bacteria competitive in vitro scenario. Green
corresponds to live bacteria, red to dead bacteria and blue corresponds to the extracellular matrix of
the bacterial biofilm.

In order to further evaluate the antimicrobial activity of the nanostructured coatings,
osteoblasts–bacteria competitive in vitro studies, already described in the Experimental Setup section,
were also carried out in two different scenarios using the coated and uncoated regions of Ti-6Al-4V disks.

3.4.1. Accidental Infection Scenario

In this first case scenario, the MC3T3-E1/S. aureus ratio seeded was 100:1. Good osteoblast adhesion
was observed in the uncoated and coated surfaces (Figure 9a,b). However, several lacunae could be
observed in the case of the uncoated surface (Figure 9a), were colonies of S. aureus were present. On
the contrary, the nanocolumnar surface appears almost fully coated by a MC3T3-E1 preosteoblast-like
cells monolayer that reaches about 90% coverage, as can be seen in Figure 10a (right).

Figure 9. Competitive co-culture MC3T3-E1/Staphylococcus aureus: (a) 100:1 ratio (accidental infection
scenario), uncoated region after 6 h; (b) 100:1 ratio (accidental infection scenario), coated region after
6 h; (c) ratio 1:100 (osteomyelitis scenario), uncoated region after 6 h; (d) ratio 1:100 (osteomyelitis
scenario), coated region after 6 h.
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Figure 10. (a) Fraction of surface covered by preosteoblasts after 6 h under osteomyelitis (left)
and accidental infection (right) scenarios; (b) lactate dehydrogenase (LDH) levels after 6 h under
osteomyelitis (left) and accidental infection (right) scenarios.

LDH levels were measured as a parameter of cell destruction, illustrated in Figure 10b (right).
There, it is evidenced that preosteoblast cell destruction is much higher on the uncoated surface than
on the nanocolumnar coating under accidental infection scenarios.

3.4.2. Osteomyelitis Scenario

In this case, the MC3T3-E1/S. aureus ratio seeded was 1:100. After 6 h of culture, Ti-6Al-4V was
covered by a significant amount of bacteria that had colonized most of the implant surface (Figure 9c,d).
The number of osteoblast cells was significantly reduced and the cells exhibited rounded morphology
with a low spreading degree. On the contrary, the nanocolumnar surface showed a higher degree
of osteoblast proliferation and spread, thus occupying a significant amount of surface (around 50%
as observed in Figure 10a, left). The very low presence of S. aureus in this sample, compared with
Ti-6Al-4V must be highlighted. The LDH measurements also evidenced much higher preosteoblast
destruction in the case of Ti-6Al-4V (see Figure 10b, left).

As a final comment, it is important to underline that the existence of the cracks on the fixation
plates reported above implies that the coating is not fully homogeneous and, therefore, based on the
results presented in [10], its efficiency as an antibacterial coating can be affected. This issue could be
minimized by making use of a rather standard industrial technique, by which the substrate rotates
around a certain axis to enhance the film homogeneity. In this manuscript, we have not attempted
this approach, as we aim at scaling up an already reported laboratory technique that operates on
static substrates. Nevertheless, it is likely that the existence of cracks is minimized when the substrate
rotates around an axis parallel to the target (parallel to the substrate holder line in Figure 3b), so
sputtered species may arrive at the film following a constant polar angle of incidence, but different
azimuthal angles.

4. Conclusions

We developed a methodology based on a new geometry to coat two-sided surfaces with areas
up to ~15 cm2 with Ti nanocolumns by magnetron sputtering at oblique angles, and demonstrated
its feasibility using a semi-industrial-scale reactor. This method was developed by calculating the
necessary conditions for the growth of these structures in a laboratory-size reactor and reproducing
them in a different geometry, suitable to coat larger areas in an industrial-scale reactor. These conditions
were defined to control the incident angle distribution function of Ti atoms in the gaseous phase in
such a way that they arrive at the surface along an oblique direction of about ~80–, and they possess
a kinetic energy distribution function with a relevant proportion of deposition atoms with energies
above the surface binding energy of Ti on the film surface.
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After checking the homogeneity and features of the nanocolumnar structures deposited on different
fixation plates on both sides, we analyzed the antibacterial functionality of the coating and demonstrated
its equivalence to those produced in a laboratory reactor. In particular, two kinds of experiments were
performed: Analysis of bacterial adhesion and biofilm formation, and osteoblasts–bacteria competitive
in vitro scenarios, the latter also named “Race for the Surface” competition. In all these cases, we
showed the opposite behavior of these surfaces toward osteoblast and bacterial proliferation and
demonstrated that the proposed method represents a valid approach to coat large surfaces on both
sides in industrial reactors, maintaining the same properties as laboratory-produced coatings on much
smaller surfaces.
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